Primitive $\pi$-regular semigroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets

Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping   from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper,  the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...

متن کامل

Brandt extensions and primitive topologically periodic inverse topological semigroups

In this paper we find sufficient conditions on primitive inverse topological semigroup S under which: the inversion inv : (H(S)) (H(S)) is continuous; we show that every topologically periodic countable compact primitive inverse topological semigroups with closed H-classes is topologically isomorphic to an orthogonal sum P i2= Bi (Gi) of topological Brandt extensions Bi (Gi) of countably compac...

متن کامل

Enlargements of Regular Semigroups

Quasi-ideals were introduced by Otto Steinfeld [43] as those non-empty subsets Q of a semigroup T satisfying QTD TQ c Q. When T is regular they are precisely the subsets Q of T which satisfy QTQ = Q ([43, Theorem 9.3]). There are many examples of quasi-ideals in regular semigroup theory. We list below some of the most important: • Every subsemigroup of the form eSe (where e is an idempotent) is...

متن کامل

Congruences on Regular Semigroups

Let S be a regular semigroup and let p be a congruence relation on S. The kernel of p, in notation kerp, is the union of the idempotent p-classes. The trace of p, in notation trp, is the restriction of p to the set of idempotents of S. The pair (kerp,trp) is said to be the congruence pair associated with p. Congruence pairs can be characterized abstractly, and it turns out that a congruence is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1992

ISSN: 0386-2194

DOI: 10.3792/pjaa.68.334